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Tetrad equations for the two-component neutrino field 
in general relativity 

J. B. GRIFFITHS and R. A. NEWIXG 
Department of Applied Mathematics, University College of North \Vales, 
Bangor 
-MS. received 24th Soreniber 1969 

Abstract. Weyl's neutrino equations are exhibited as equivalent tetrad equa- 
tions, and the tetrad conditions for a pure radiation neutrino gravitational 
field are established. I t  is shown that the neutrino flux vector for the radiation 
field defines a shear-free and twist-free family of geodesics. A class of metrics is 
found which can be interpreted either as neutrino radiation or as null Einstein- 
1 I a x ~ e l l  fields. 

1. Introduction 
In  this paper we are using two-component spinors in the notation of Newman and 

Penrose (1962) with space-time signature -2, the spinor indices being raised and 
lowered by 

In  this notation IVeyl's equations for the two-component neutrino are 

f" = € J i l t n ,  

u " A B f  niu = 0, U U A B f A l u  = 0 (1.1) 

CA = P E B A .  

nhere f B i c r  denotes the spinor derivative defined by Newman and Penrose. T h e  
fundamental metric spinor e A B ,  e A B  and the generalized Pauli matrices ailAB are 
constants with respect to spinor differentiation, and the Pauli matrices have the prop- 
erties 

a,,ABU\>Bb + O y A n a [ i B &  = g,l18"& 
uuAB 8" . 6 B  

OaCu = c U '  

Given 5" n e  can define a second basis spinor X" such that 

[ A X B - f B X A  = 

Using these n e  can construct a tetrad of null vectors 

1p = t A u i i A B f B ,  

??21, = f A U k ~ A B X B  

n, = X ' l ~ , l i B X U  

7% = f+J,AiX 
B 

where ?E,, is the complex conjugate of mLl, which have the properties 

1,n" = 1,  1,m" = 0, n u m a  = 0, muiEu = - 1 
guv = l l lu, + nulv - m,@, - 6,mV 

1,' and 7llL being real null vectors. We can also construct the spin tensor 

s,,, = f p u A B u V B & f ~  

s,, y = $\//g€II,'UoS~a. 
which is self dual, i.e. 
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2. Tetrad equations 
If the spinor f A  is a solution of Weyl's equation ( l . l ) ,  the null vector I,! is the 

neutrino flux vector and is such that 1,;" = 0, the semi-colon denoting tensor 
covariant differentiation. I t  will follow from the identity 

S,", y = 2tia ,4VB& + &Al, 

that b-eyl's equations are exactly equivalent to the tensor equation (Penney 1963, 
Griffiths and Newing 1970) 

S,,";, = H,, (2.1) 

where H,, = ("(al,,. For (1.1) obviously implies (2.1) and (2.1) implies that 

0 = UP&.( S,", , - H,) 
- - c r , l ; E u f i " i B a v B & ~ ( ~ ,  

= S & E B u Y B & ( ~ !  , 
= tb rJVE&Cl ,  

that is, 
u"&c, , = 0. 

With the help of (1.2) it may be shown that S,, = Eumv-m,l,, and H,! = n ~ ~ l ~ , ; ~ ~ ,  
and the tensor equation (2.1) may be expressed in the tetrad form 

(lilmv - muly);; ,  = (2.2) 
With suitable units the energy-momentum tensor for the neutrino field will be taken 
to be (Bergmann 1960) 

E,, = ,ajL4gtB + t~i,ll~,~,l+tJ3 - P+J,~X - P ~ ~ . M , , )  
and again using (1.2) this may be expressed in the tetrad form 

\\.here 
E,,, = i(H,!?E\, + H,,fi,, - RLlm,, - ~ , m , ,  + P,,I,, + P,lii) 

P,! = f ' l l l i X A  - & , , X A  = ? i i ~ ? 7 Z U ~ , , .  

(2.3) 

JVeyl's equations imply that the trace of the energymomentum tensor is zero and so, 
in suitable units, the gravitational equations for the combined neutrino gravitational 
field will be taken to be 

Rl1,+E,, = 0. (2.4) 
A given space-time will admit a neutrino field if a null tetrad can be constructed 
satisfying equations (2.2) and (2.4) with E,,, given by (2.3). 

3. The pure radiation field 

take the energy-momentum tensor of a neutrino pure radiation field to be 
If the tetrad vector 1, is interpreted as a neutrino flux vector, it is reasonable to 

E,,, = X21,1,,. 
Then since PEuy = 0 it follows from (2.3) that 

PP, = 0 

(3.1) 
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and 

Similarly from maEav = 0 we obtain the restriction that H,  is of the form 

PH, = 0.  

H,  = al, + bm, ( 3 4  

(3.3) 

where a = mapa and b is real. These conditions imply that P, is of the form 

P, = iAl, + dm, - a%, 

where A is real. If we substitute the expressions (3.2) and (3.3) into (2.3), E,, reduces 
to the form (3.1) if A = -$A2. 

For a radiation field of this type the condition that E"";,, = 0 implies that 

since lV:,% = 0. This then gives the condition that 

i v l , ; v l f i  = l V l R ; v l , .  

We also have for the pure radiation field that 

mvm"l,,, = 0 .  

These two conditions (Sachs 1961, Robinson 1961) imply that for a neutrino pure 
radiation field the flux vector 1, defines a shear-free family of geodesics. 

Now the neutrino equation (2.2) for this radiation field gives the condition 
EUHa-mffR,  = 0 which becomes 

i.e. (Goodinson 1969) 

For this particular case, therefore, the neutrino flux vector liL satisfies the same 
condition as the propagation vector for a null electromagnetic field corresponding to 
Peres' exceptional case (Peres 1961, Geroch 1966). For this condition the family of 
geodesics is also twist-free. 

Theorem: If in a given space-time the vectors 1, and m, define a neutrino field, the 
field is a pure radiation field of the type E,,, = A21,1v if, and only if, 

(i?iiam4 - maEfl)la:R = 0 

E"",vyI 1 A 11:v = 0 .  

These results may be summarized in the theorem- 

mula:, = al, + bm, 
iiium,;lb = iAl, + dm, - a%, 

where the coefficients b and A are real. In  this case the flux vector 1, defines a shear- 
free and twist-free family of geodesics, and is a scalar multiple of a gradiant. 

4. A metric admitting both neutrino and null electromagnetic fields 
Geroch (1966) has shown that space times defined by a metric tensor of the form 

0 1  0 0  
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where the coefficients h ,  are independent of the coordinate xo, admit null electro- 
magnetic fields for which the propagation vector L, satisfies the condition 

E”A,vLAL,;, = 0. 

In  this case the electromagnetic field is not determined uniquely by the metric. 
Introducing the null tetrad 

L, -- e06 a ,  iV, = e-”{6,O +$(h, +h22 +h32)6U13 

the electromagnetic field is defined by the self dual tensor (Goodinson and Newing 
1969) 

U,, = el*(L,Mv - M,LLv) 

and the vacuum field equations w , ~ ; ,  = 0 imply that 

*,2 = P , 3 ,  # , 3  = - P . 2 ,  *,o = 0 ,  P,o  = 0 
and hence that p , 2 2 + p , 3 3  = 0. 

The Ricci tensor for the metric is 

0 0  0 0 

R,, = (: ;i2 ‘i 
0 -L 

where 

and 

and in suitable units the gravitational field equations are 

y = h3,2-h2 ,3  

- k2 = A 2 2 1  + A 3 3 1  -$(h1 ,22  + b 3 )  -3r2 

R,,, = -L,L, 

so that y must be a function of x1 only and e” = I?. Thus In K must be a solution of the 
two-dimensional Laplace equation 

(In k>,m +(In K),33  = 0 .  
Now consider the possibility of finding a solution to the neutrino gravitational 

field equations for the same metric. First we notice that the tetrad equations for a 
neutrino gravitational field are invariant with respect to $ transformations (Peres 1961) 
but are dependent upon the parameter q5 of the 4 transformation. So we can consider 
defining a neutrino field with the vectors 

1, = e08,1, m, = eidM,. 

For the given metric, H, = 0 and the neutrino equation (2.2) implies that 

4 , z  = 6 3 ,  4 , 3  = - 0 2 ,  +,o = 0 ,  8 , o  = 0 .  

The vector P, = mama,, is given by 

P,  = 3 iySV1- iq5 Y. 
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The conditions for a pure radiation field imply that 4, and hence 8, is a function of x1 
only, and the energy-momentum tensor then becomes 

Buy = (24,1 - y )  eeSu18y1. 

The  metric can therefore also be interpreted as admitting a neutrino gravitational 
field if 

k2 = (24,1 - y )  ee (4.1) 
where y, 8 and 4 are functions of x1 only. This solution is therefore a particular case 
of the above solution for an electromagnetic field. So the metric can be interpreted as 
admitting either a null electromagnetic field or a neutrino pure radiation field. As in 
the electromagnetic case, the neutrino field is not determined uniquely by the metric, 
since the two neutrino parameters e(&) and 4(x1) are subject to the single restriction 
(4.1). 
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