Tetrad equations for the two-component neutrino field in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1970 J. Phys. A: Gen. Phys. 3269
(http://iopscience.iop.org/0022-3689/3/3/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:14

Please note that terms and conditions apply.

Tetrad equations for the two-component neutrino field in general relativity

J. B. GRIFFITHS and R. A. NEWING
Department of Applied Mathematics, University College of North Wales, Bangor

MS. received 24th November 1969

Abstract

Weyl's neutrino equations are exhibited as equivalent tetrad equations, and the tetrad conditions for a pure radiation neutrino gravitational field are established. It is shown that the neutrino flux vector for the radiation field defines a shear-free and twist-free family of geodesics. A class of metrics is found which can be interpreted either as neutrino radiation or as null EinsteinMaxwell fields.

1. Introduction

In this paper we are using two-component spinors in the notation of Newman and Penrose (1962) with space-time signature -2 , the spinor indices being raised and lowered by

$$
\xi^{A}=\epsilon^{A B} \xi_{B}, \quad \xi_{A}=\xi^{B} \epsilon_{B A} .
$$

In this notation Weyl's equations for the two-component neutrino are

$$
\begin{equation*}
\sigma^{\alpha \dot{A} B} \xi_{B \mid \alpha}=0, \quad \sigma^{\alpha \dot{A} B} \dot{\xi}_{A \mid \alpha}=0 \tag{1.1}
\end{equation*}
$$

where $\xi_{B \mid \alpha}$ denotes the spinor derivative defined by Newman and Penrose. The fundamental metric spinor $\epsilon_{A B}, \epsilon^{A B}$ and the generalized Pauli matrices $\sigma^{\mu \dot{A} B}$ are constants, with respect to spinor differentiation, and the Pauli matrices have the properties

$$
\begin{aligned}
\sigma_{\mu}{ }^{\dot{A}} \sigma_{v B \dot{C}}+\sigma_{\nu}^{\dot{A} B} \sigma_{\mu B \dot{C}} & =g_{\mu} \delta^{\dot{A}} \dot{C} \\
\sigma^{\alpha \dot{A} \dot{B}} \sigma_{u \dot{C} D} & =\delta^{\dot{A}} \cdot \dot{\delta}^{B}{ }_{D} .
\end{aligned}
$$

Given ξ^{A} we can define a second basis spinor χ^{A} such that

$$
\begin{equation*}
\xi_{A} \chi^{B}-\xi^{B} \chi_{A}=\delta_{A}^{B} \tag{1.2}
\end{equation*}
$$

Using these we can construct a tetrad of null vectors

$$
\begin{array}{rlrl}
l_{\mu u} & =\xi^{\dot{A}} \sigma_{\mu \dot{A} B} \xi^{H}, & n_{\mu} & =\chi^{\dot{A}} \sigma_{\mu \dot{A} B} X^{B} \\
m_{\mu u} & =\xi^{\dot{A} \sigma_{\mu \dot{A} B} X^{B}} & \bar{m}_{\mu}=\xi^{A} \sigma_{\mu \dot{A} \dot{B}} X^{\dot{B}}
\end{array}
$$

where \bar{m}_{u} is the complex conjugate of m_{u}, which have the properties

$$
\begin{array}{ll}
l_{\alpha} n^{\alpha}=1, & l_{\alpha} m^{\alpha}=0, \quad n_{\alpha} m^{\alpha}=0, \quad m_{\alpha} \bar{m}^{\alpha}=-1 \\
& g_{\mu \nu}=l_{\mu} n_{v}+n_{\mu} l_{v}-m_{\mu} \bar{m}_{v}-\bar{m}_{\mu} m_{v}
\end{array}
$$

l_{μ} and n_{μ} being real null vectors. We can also construct the spin tensor

$$
S_{\mu \nu}=\xi_{\dot{A}} \sigma_{\mu}{ }^{\dot{A} B} \sigma_{\nu B \dot{C}} \dot{\xi} \dot{C}
$$

which is self dual, i.e.

$$
S_{\mu \nu}=\frac{1}{2} \sqrt{ }{ }^{\prime} \epsilon_{\mu \nu \rho \sigma} S^{\rho \sigma} .
$$

2. Tetrad equations

If the spinor ξ^{A} is a solution of Weyl's equation (1.1), the null vector l_{μ} is the neutrino flux vector and is such that $l^{v} ; v=0$, the semi-colon denoting tensor covariant differentiation. It will follow from the identity

$$
S_{\mu}{ }^{\nu} \mid \nu=2 \xi_{A} \sigma_{\mu}{ }^{\dot{A} B} \sigma_{B \dot{C}}^{v} \xi^{\dot{C}}{ }_{\mid \nu}+\dot{\xi}^{\dot{A}} \xi_{\dot{A} \mid \mu}
$$

that Weyl's equations are exactly equivalent to the tensor equation (Penney 1965, Griffiths and Newing 1970)

$$
\begin{equation*}
S_{\mu}{ }^{\nu} ; v=H_{u} \tag{2.1}
\end{equation*}
$$

where $H_{\mu u}=\xi^{\dot{A}} \xi_{\dot{A} \mid u}$. For (1.1) obviously implies (2.1) and (2.1) implies that

$$
\begin{aligned}
& 0=\sigma^{u}{ }_{D_{E}}\left(S_{\mu}{ }^{\nu} \mid \nu-H_{u}\right) \\
& =\sigma_{u \dot{D} E} \sigma^{\mu \dot{A} B^{\prime}} \sigma_{B \dot{C}} \xi_{\dot{A}} \dot{\xi}_{\mid \nu} \\
& =\delta_{\dot{D}}{ }^{\dot{A}} \delta_{E}{ }^{B} \sigma^{v}{ }_{B \dot{C}} \xi_{A} \dot{\xi}^{\dot{c}}{ }_{!\nu} \\
& =\xi_{\dot{D}} \sigma_{E \dot{C}} \dot{\xi}_{\mid v}
\end{aligned}
$$

that is,

$$
\sigma_{E \dot{C}}^{v} \dot{\xi}_{\mid \nu}^{\dot{C}_{1 \nu}}=0 .
$$

With the help of (1.2) it may be shown that $S_{\mu v}=l_{\mu} m_{v}-m_{\mu} l_{v}$ and $H_{u}=m^{\alpha} l_{\alpha ; u}$, and the tensor equation (2.1) may be expressed in the tetrad form

$$
\begin{equation*}
\left(l_{\mu} m^{\nu}-m_{\mu} l^{v}\right)_{; v}=m^{\alpha} l_{\alpha ; u} \tag{2.2}
\end{equation*}
$$

With suitable units the energy-momentum tensor for the neutrino field will be taken to be (Bergmann 1960)

$$
E_{\mu \nu}=\mathrm{i}\left(\xi^{A}{ }_{\mid v} \sigma_{\mu A \dot{B}} \xi^{\dot{B}}+\xi^{A}{ }_{\mid \mu} \sigma_{\nu A \dot{B}} \dot{\xi}^{\dot{B}}-\xi^{A} \sigma_{\mu A \dot{B}} \xi^{\dot{B}}{ }_{\mid \nu}-\xi^{A} \sigma_{\nu A \dot{B}} \xi^{\dot{B}}{ }_{\mid \mu}\right)
$$

and again using (1.2) this may be expressed in the tetrad form
where

$$
\begin{equation*}
E_{u v}=\mathrm{i}\left(H_{u} \bar{m}_{v}+H_{v} \bar{m}_{u}-\bar{H}_{u} m_{v}-\bar{H}_{v} m_{u}+P_{\mu} l_{v}+P_{v} l_{u}\right) \tag{2.3}
\end{equation*}
$$

$$
P_{\mu}=\xi_{A \mid \alpha} X^{A}-\xi_{\dot{A} \mid \alpha} \chi^{\dot{A}}=\bar{m}^{\alpha} m_{\alpha ; \mu,} .
$$

Weyl's equations imply that the trace of the energy-momentum tensor is zero and so, in suitable units, the gravitational equations for the combined neutrino gravitational field will be taken to be

$$
\begin{equation*}
R_{\mu \nu}+E_{\mu \nu}=0 . \tag{2.4}
\end{equation*}
$$

A given space-time will admit a neutrino field if a null tetrad can be constructed satisfying equations (2.2) and (2.4) with $E_{\mu \nu}$ given by (2.3).

3. The pure radiation field

If the tetrad vector l_{μ} is interpreted as a neutrino flux vector, it is reasonable to take the energy-momentum tensor of a neutrino pure radiation field to be

$$
\begin{equation*}
E_{\mu v}=\lambda^{2} l_{u} l_{v} \tag{3.1}
\end{equation*}
$$

Then since $l^{\prime \prime} E_{\alpha v}=0$ it follows from (2.3) that

$$
l^{\alpha} P_{\alpha}=0
$$

and

$$
l^{\alpha} H_{\alpha}=0
$$

Similarly from $m^{\alpha} E_{\alpha \psi \nu}=0$ we obtain the restriction that H_{μ} is of the form

$$
\begin{equation*}
H_{\mu}=a l_{\mu}+b m_{\mu} \tag{3.2}
\end{equation*}
$$

where $a=m^{\alpha} P_{c}$ and b is real. These conditions imply that P_{μ} is of the form

$$
\begin{equation*}
P_{\mu}=\mathrm{i} A l_{\mu}+\bar{a} m_{\mu}-a \bar{m}_{\mu} \tag{3.3}
\end{equation*}
$$

where A is real. If we substitute the expressions (3.2) and (3.3) into (2.3), $E_{\mu \nu}$ reduces to the form (3.1) if $A=-\frac{1}{2} \lambda^{2}$.

For a radiation field of this type the condition that $E^{\mu \nu}{ }_{i v}=0$ implies that

$$
\frac{2 \lambda_{, v}}{\lambda} l^{v} l^{\mu}+l_{; v}^{\mu} l^{v}=0
$$

since $l^{\nu}: r=0$. This then gives the condition that

$$
l^{v} l_{\alpha ; v} l_{\beta}=l^{v} l_{\beta ; v} l_{\alpha}
$$

We also have for the pure radiation field that

$$
m^{v} m^{\alpha} l_{\alpha ; v}=0
$$

These two conditions (Sachs 1961, Robinson 1961) imply that for a neutrino pure radiation field the flux vector l_{μ} defines a shear-free family of geodesics.

Now the neutrino equation (2.2) for this radiation field gives the condition $\bar{m}^{\alpha} H_{\alpha}-m^{\alpha} \bar{H}_{\alpha}=0$ which becomes
i.e. (Goodinson 1969)

$$
\left(\bar{m}^{\alpha} m^{\beta}-m^{\alpha} \bar{m}^{\beta}\right) l_{\alpha ; \beta}=0
$$

$$
\epsilon^{k 2 \mu \nu} l_{\lambda} l_{l ; v}=0 .
$$

For this particular case, therefore, the neutrino flux vector l_{μ} satisfies the same condition as the propagation vector for a null electromagnetic field corresponding to Peres' exceptional case (Peres 1961, Geroch 1966). For this condition the family of geodesics is also twist-free.

These results may be summarized in the theorem-
Theorem: If in a given space-time the vectors l_{u} and m_{μ} define a neutrino field, the field is a pure radiation field of the type $E_{\mu \nu}=\lambda^{2} l_{\mu} l_{\nu}$ if, and only if,

$$
\begin{aligned}
m^{\alpha} l_{c: \mu} & =a l_{\mu}+b m_{\mu} \\
\bar{m}^{\alpha} m_{c ; \mu} & =\mathrm{i} A l_{\mu}+\bar{a} m_{\mu}-a \bar{m}_{\mu}
\end{aligned}
$$

where the coefficients b and A are real. In this case the flux vector l_{μ} defines a shearfree and twist-free family of geodesics, and is a scalar multiple of a gradiant.

4. A metric admitting both neutrino and null electromagnetic fields

Geroch (1966) has shown that space times defined by a metric tensor of the form

$$
g_{u v}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & h_{1} & h_{2} & h_{3} \\
0 & h_{2} & -1 & 0 \\
0 & h_{3} & 0 & -1
\end{array}\right)
$$

where the coefficients h_{n} are independent of the coordinate x^{0}, admit null electromagnetic fields for which the propagation vector L_{μ} satisfies the condition

$$
\epsilon^{\kappa \lambda \mu v} L_{\lambda} L_{\mu ; v}=0
$$

In this case the electromagnetic field is not determined uniquely by the metric.
Introducing the null tetrad

$$
\begin{aligned}
L_{\mu} & =\mathrm{e}^{\rho} \delta_{\mu}{ }^{1}, \quad N_{\mu}=\mathrm{e}^{-\rho}\left\{\delta_{\mu}^{0}+\frac{1}{2}\left(h_{1}+h_{2}{ }^{2}+h_{3}{ }^{2}\right) \delta_{\mu}{ }^{1}\right\} \\
M_{\mu} & =\frac{1}{\sqrt{ } 2}\left\{\left(h_{2}-\mathrm{i} h_{3}\right) \delta_{\mu}{ }^{1}-\delta_{\mu}^{2}+\mathrm{i} \delta_{\mu}^{3}\right\}
\end{aligned}
$$

the electromagnetic field is defined by the self dual tensor (Goodinson and Newing 1969)

$$
\omega_{\mu \nu}=\mathrm{e}^{\mathrm{i} \psi}\left(L_{\mu} M_{\nu}-M_{\mu} L_{\nu}\right)
$$

and the vacuum field equations $\omega^{\mu \nu} ; v=0$ imply that

$$
\psi_{, 2}=\rho_{, 3}, \quad \psi_{, 3}=-\rho_{, 2}, \quad \psi_{, 0}=0, \quad \rho_{.0}=0
$$

and hence that $\rho_{, 22}+\rho_{, 33}=0$.
The Ricci tensor for the metric is
where

$$
R_{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -k^{2} & \frac{1}{2} \gamma_{, 3} & -\frac{1}{2} \gamma_{, 2} \\
0 & \frac{1}{2} \gamma_{3} & 0 & 0 \\
0 & -\frac{1}{2} \gamma_{, 2} & 0 & 0
\end{array}\right)
$$

and

$$
\gamma=h_{3,2}-h_{2,3}
$$

$$
-k^{2}=h_{2,21}+h_{3,31}-\frac{1}{2}\left(h_{1,22}+h_{1,33}\right)-\frac{1}{2} \gamma^{2}
$$

and in suitable units the gravitational field equations are

$$
R_{\mu v}=-L_{\mu} L_{v}
$$

so that γ must be a function of x^{1} only and $\mathrm{e}^{\rho}=k$. Thus $\ln k$ must be a solution of the two-dimensional Laplace equation

$$
(\ln k)_{, 22}+(\ln k)_{, 33}=0
$$

Now consider the possibility of finding a solution to the neutrino gravitational field equations for the same metric. First we notice that the tetrad equations for a neutrino gravitational field are invariant with respect to ψ transformations (Peres 1961) but are dependent upon the parameter ϕ of the ϕ transformation. So we can consider defining a neutrino field with the vectors

$$
l_{\mu}=\mathrm{e}^{\theta} \delta_{\mu}{ }^{1}, \quad m_{\mu}=\mathrm{e}^{\mathrm{i} \phi} M_{\mu}
$$

For the given metric, $H_{\mu}=0$ and the neutrino equation (2.2) implies that

$$
\phi_{, 2}=\theta_{, 3}, \quad \phi_{, 3}=-\theta_{, 2}, \quad \phi_{, 0}=0, \quad \theta_{, 0}=0 .
$$

The vector $P_{v}=\bar{m}^{\alpha} m_{\alpha \mid v}$ is given by

$$
P_{v}=\frac{1}{2} \mathrm{i} \gamma \delta_{v}{ }^{1}-\mathrm{i} \phi_{v} .
$$

The conditions for a pure radiation field imply that ϕ, and hence θ, is a function of x^{1} only, and the energy-momentum tensor then becomes

$$
E_{\mu \nu}=\left(2 \phi_{, 1}-\gamma\right) \mathrm{e}^{\theta} \delta_{\mu}{ }^{1} \delta_{\nu}{ }^{1}
$$

The metric can therefore also be interpreted as admitting a neutrino gravitational field if

$$
\begin{equation*}
k^{2}=\left(2 \phi_{.1}-\gamma\right) \mathrm{e}^{\theta} \tag{4.1}
\end{equation*}
$$

where γ, θ and ϕ are functions of x^{1} only. This solution is therefore a particular case of the above solution for an electromagnetic field. So the metric can be interpreted as admitting either a null electromagnetic field or a neutrino pure radiation field. As in the electromagnetic case, the neutrino field is not determined uniquely by the metric, since the two neutrino parameters $\theta\left(x^{1}\right)$ and $\phi\left(x^{1}\right)$ are subject to the single restriction (4.1).

Acknowledgments

One of us (J.B.G.) wishes to acknowledge the award of a research scholarship by the Science Research Council while this work was carried out.

References

Bergmann, O., 1960, J. math. Phys., 1, 172-7.
Geroch, R. P., 1966, Ann. Phys., N. Y., 36, 147-87.
Goodinson, P. A., 1969, Ph.D. thesis, University of Wales.
Goodinson, P. A., and Newing, R. A., 1969, J. Inst. Math. Applic., 5, 72-90.
Griffiths, J. B., and Newing, R. A., 1970, J. Phys. A: Gen. Phys., 3, 136-48.
Newman, E., and Penrose, R., 1962, J. math. Phys., 3, 566-78.
Penney, R., 1965, J. math. Phys., 6, 1309-14.
Peres, A., 1961, Ann. Phys., N.Y., 14, 419-39.
Robinson, I., 1961, J. math. Phys., 2, 290-1.
Sachs, R., 1961, Proc. R. Soc. A, 264, 309-37.

